Course curriculum
-
1
MODULE 1 (KPG)
- LEC 1
- LEC 2
- LEC 3
- LEC 4
-
2
Module 2 (AKC)
- some more problems of evaluating using defination
- ImproperIntegral
- PROBLEMS ON MEAN VALUE THEORY
- .VOLUMES OF SOLIDS OF REVOLUTION CONT. 1
- Reduction
- Problems on Beta&Gamma func.(contd.1)
- Integration; Area of surface of Revolution(Surface Area of Sphere)
- Integration; Area of surface of Revolution
- SUCCESSIVE DIFFERENTIATION; Standard Forms
- Definition of the Definite Integral
- Series Expansion of fns using Diffn. & Integration
- Mean Value Theorem(Assorted Problems) Contd...
- Rolle's th. verification & a different expression for 'c' in terms of theta
- Integration; Area of surface of Revolution
- SUCCESSIVE DIFFERENTIATION; Trigno Functions & Leibnitz Theorem
- Rolle's Theorem with Geometrical Interpretation
- Reduction Formulae Concepts & Examples(contd.)
- properties of definite integrals with applications
- contgeometrical meaning;with examples evaluating from defn.)
- INTEGRAL CALCULAS AREA UNDER CURVES CONT.
- Problems on Rolle's th. & Intro. to Lagrange's MVT theory
- INTEGRAL CALCULAS AREA UNDER CURVES (Polar Co-ordinates)... CONT. 3
- Reduction
- Maclaurin's Series for Trigo Fn and applications
- Taylor's and Maclaurin's series; With Remainder after 'n' terms
- Problems on Beta&Gamma func.(contd.2)
- Leibniz TheoremStatement and Problems
- Reduction Formulae
- SUCCESSIVE DIFFERENTIATION ; Meaning & Examples
- Successive Differentiation REVISION & Problems
- Problems on Beta&Gamma func.
- ImproperIntegral
- Series Expansion of fns using Diffn. & Integration.....contd.....
- MAXIMA AND MINIMA;Method of Lagrangian Multiplier
- Problems on Leibniz Theorem; Recurrence Relations
- VOLUMES OF SOLIDS OF REVOLUTION
- Reduction Formulae Concepts & Examples
- Miscellaneous problems on Mean Value th
- Expansion of fns by Special Methods
- Integration; Area of surface of Revolution(Polar Co-ordinates)
- Problems on Definite Integral using properties
- Expansion of FnTaylor's & Maclaurin's Series
- INTEGRAL CALCULAS AREA UNDER CURVES (Polar Co-ordinate)
- Problems on Definite Integral using properties
- 2.Problems on Definite Integral using properties & Introdn. to reduction formula
- Mean Value Theorem(Assorted Problems)
- INTEGRAL CALCULAS AREA UNDER CURVES
- ImproperIntegral
- Rolle's Theorem; One Special Problem
- Relating LMVTh to algebraic & other calculus method
- MAXIMA AND MINIMA; The Fisherman Problem
- Cauchy's Mean Value Th; Discussion and Proof
- Lagrange's Mean Value Th.(Proof & Discussion)
- Cauchy's MVTh; LMVT as a special case of CMVT
- MEAN VALUE Theory ; Some Problems
- Assorted Problems on Beta and Gamma Function
- ImproperIntegral
- Definite Integrals used to Evaluate Infinite Series
-
3
MODULE 3 (KD)
- Linear map,Matrix representation of linear map
- Linear map , Rank Nullity Theorem
- Linear map , Image
- Linear map, Creation
- Linear map ,Composition of linear map
- Linear map, Kernel
- Linear map, Defination and Examples
- PARSEVAL'S IDENTITY FOR FOURIER SERIES 1
- PROPERTIES OF FOURIER TRANSFORM 1
- PROPERTIES OF FOURIER TRANSFORM 2
- FOURIER SERIES
- FOURIER SERIES
- FOURIER SERIES 1
- FOURIER SERIES 2
- FOURIER TRANSFORM (SOME MORE IMPORTANT FOURIER TRANSFORM)
- SOME QUESTIONS OF PARSEVAL'S IDENTITY FOR FOURIER SERIES (PART_2)
- PROBLEMS RELATED TO FOURIER TRANSFORM
-
4
MODULE 4 (SPN)
- VECTOR SPACE - LECTURE 1 - SPN
- VECTOR SPACE - LECTURE 2 - SPN
- VECTOR SPACE - LECTURE 3 - SPN
-
5
MODULE 5(SD)
- LECTURE 2(POLAR REPRESENTATION OF COMPLEX NO.)
- LECTURE 2(CAUCHY-RIEMANN EQUATION)
- PART 1(HARMONIC FUNCTION)
- LECTURE 1(FUNCTION OF COMPLEX VARIABLE)
- PART 2(HARMONIC FUNCTION)
- LECTURE 1(CONTINUITY OF A COMPLEX VALUED FUNCTIONS)
- LECTURE(FINITE COMPLEX PLANE)
- LECTURE(CONFORMAL MAPPING)MAIN
-
6
MODULE 6(PM)
- Module 4- Cauchy's Root test
- Module 5- Introduction to vector calculus
- Module 5- Vector product
- Module 4- Raabe's test
- Module 1-Homogenous system of equations(examples)
- Module 4- Comparison test
- Module 5-Scalar Product
- Module 4- D'Alembert Ratio test
- Module 1- Cayley Hamilton Theorem
- Module 4- Absolute and Conditional Convergence
- Module 4- Alternating series and Lleibnitz's theorem
- Module 1- Diagonalization of Matrix
- Module 3 Homogenous functions
- Module 1- Eigen values and Eigen vectors
- Module 3-Jacobian
- Module 3-Total Differentiation
- Module 1-Rank of a matrix and System of linear equation
- Module 1-Higher power of matrix using CHT
- Module 1-System of linear equations(examples)
- Module 3- Differentiation of composite function
- Module 1-Homogenous system of equations
- Module 1_Engineering Mathematics 1
- Module 4- Infinite series(convergence & Divergence)
- Module 3-Introduction to functions of several variables
- Module 3-Euler's Theorem
- Module 3- jacobian(examples)
- Module 1- Determinant and Laplacian method
- Module 4- Introduction to Infinite series
- Module 3-Maxima and Minima
- Module 1-Introduction to Matrix